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Abstract. We study the roughening transition of the dual of the two-dimensional (2D) XY
model, of the discrete Gaussian model, of the absolute value solid-on-solid model and of the
interface in an Ising model on a three-dimensional (3D) simple cubic lattice. The investigation
relies on a renormalization group finite size scaling method that was proposed and successfully
tested a few years ago. The basic idea is to match the renormalization group flow of the
interface observables with that of the exactly solvable body-centred solid-on-solid (BCSOS)
model. Our estimates for the critical couplings @’ = 1.11991), KE¢ = 0.66532) and

K£SOS = 0.806082) for the XY model, the discrete Gaussian model and the absolute value

solid-on-solid model, respectively. For the inverse roughening temperature of the Ising interface

we find K,'-fing = 0.407581). To the best of our knowledge, these are the most precise estimates

for these parameters published so far.

1. Introduction

Among the phase transitions that occur in 2D or effectively 2D statistical systems, those of
the so-called Kosterlitz—Thouless (KT) type [1] belong to the most challenging. The KT
phase transition is of infinite order: the free energy and all its derivatives stay finite at the
transition point. Despite the relatively simple arguments that suggest the existence of such
a transition in a variety of systems, a rigorous proof of the KT nature of the phase transition
in many physically interesting systems is still lacking. Also all of the numerical studies
(many of them Monte Carlo studies of the 2D XY model) could not provide an unambigious
confirmation of the KT scenario. A number of references will be given in section 5.

The reason for the problem is the appearance of corrections to scaling that vanish only
logarithmically with the system size. Most of the investigations based on simulations of
KT models on finite lattices suffer from these corrections.

Note, however, that there exists at least one 2D lattice model, which haspb®em
to undergo a KT transition by exact solution. This is the body-centred solid-on-solid
(BCSOS) model [2], the configurations of which are, up to boundary conditions, in one-to-
one correspondence with those of a special six-vertex model [3-5], the F-model.

A few years ago we proposed a method that allows one to investigate the KT transition
of a given model by comparing its block spin renormalization group (RG) flow (on finite
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lattices) with that of the BCSOS model [6,7]. A matching of the two RG flows at long
distance (large blocks) demonstrates that the models belong to the same universality class,
which is the KT class here.

In contrast to the usual approaches, the method introduces systematic errors that decay
like L=2, whereL is the size of the lattices involved in the computations.

Our approach has been successfully applied to the absolute-value solid-on-solid (ASOS)
model, the discrete Gaussian (DG) model and the dual of the standard XY model in two
dimensions [6]. Successful applications to the interface of the Ising model were performed
in [7], and, recently, in [8].

In the present paper we improve on the results of [6] by using larger lattice sizes and
increasing the statistics by a factor of about 100. This became affordable both by the
availability of faster computers and the use of more efficient program code.

This paper is organized as follows. In section 2 we define the models and state the
exact results for the BCSOS model relevant to our study. We briefly discuss the KT flow
equations. Section 3 is devoted to a description of the matching method. In section 4 we
present and discuss our numerical results. A comparison with previous estimates of the
critical couplings and non-universal parameters is presented in section 5. Conclusions and
an outlook follow.

2. Ising model interfaces and solid-on-solid models

2.1. Ising model interfaces
We consider the 3D Ising model on the simple cubic lattice, with Hamiltonian

H=-— Z xSy s, = +1. Q)
(

x,y)

The sites of the lattice are labelled by integer coordinates (x, x2, x3). The sum in
equation (1) is over all (unordered) nearest-neighbour pairs of sites in the lattice. The
partition function is

Z=Y exp(—K'H). 2)
{s}

Here, the summation is over all possible configurations of the Ising spins. The pair
interaction is normalized such that = 1/(kgT), wherekg denotes Boltzmann’s constant,
andT is the temperature.

At a critical couplingk! (the estimate of a recent study [9]4§ = 0.221 654610)) the
infinite volume limit of the model undergoes a second-order phase transitiork 'Ferk,
the system shows spontaneous breaking of the reflection symmetry.

In order to study interfaces separating extended domains of different magnetization, we
consider lattices with extensiah in the x;- and x»-directions and with extensio® in the
x3-direction. We generalize equation (1) to

H=-— Z kyySySy. 3)
(x.y)

The lattice becomes a torus by regarding the opposite boundary planes as neighbour planes.
For the Ising spins we will apply antiperiodic boundary conditions in tle-direction, by

letting k., = —1 for the links that connect the uppermost with the lowermost plane. For
the other links we sekt,, = 1.
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For sufficiently largek' and large enougld, the imposure of antiperiodic boundary
conditions forces the system to develop exactly one interface, which is a region where the
magnetization rapidly changes sign. This interface is parallel to a (001) lattice plane.

The Ising (001) interface undergoegaughening transitionat an inverse temperature
Kk = 1/(kgTr) that is nearly twice as large as the bulk transition coupkijgiven abové.

In this work, we shall determine a new estimate g%, and also for other parameters of
the roughening transition. For a collection of previous estimates, see section 5.

At the roughening transition, the large scale interface behaviour changes from being rigid
or smooth at low temperature to being rough at high temperature. The transition shows up
in a characteristic behaviour of various quantities. For example, in the smooth phase, the
interfacial width stays finite wheh tends to infinity, while it diverges logarithmically with
the system size in the rough phase [11,12]. For general introductions to roughening, see
[13-15]. For comparisons of real life experiments with theory see, for example [16].

2.2. Solid-on-solid models

A fairly good approximation of the Ising interface is given by the solid-on-solid (SOS)
models to be introduced in this section. The SOS approximation amounts to ignoring
overhangs of the Ising interface and bubbles in the two phases separated by the interface.
For a review of exact results on SOS types of models, see, for example [13]. By duality
[17] and other exact transformations (see, e.g. [18]), SOS models have been shown to be
equivalent to a variety of other statistical models.

All SOS models that we shall consider have in common that they are 2D lattice spin
models.

Our first example of an SOS model is the ASOS model. It can be considered as the
SOS approximation of an (001) lattice plane interface of an Ising model on a simple cubic
lattice. The model is defined by the Hamiltonian

Hasos = K*5%%h, — hy|. 4)

The spin variable#, take integer values. Here and in the following, the Boltzmannian will
always be exp-H). A factor 1/(kgT), wherekg denotes Boltzmann’'s constant aficthe
temperature, is absorbed in the definition of the Hamiltonian.

We interpret the:, as heights with respect to a certain base. For finite poski{e®S
the Hamiltonian will favour that neighbouring spins take similar values. WK&R®S is
large enough, the surface will not fluctuate too wildly (smooth phase). On the other hand,
if KASOSis below a certain critical value, the surface becomes ‘rough’, and, for example,
the surface thickness diverges when the system size goes to infinity.

Let us now turn to the discrete Gaussian (DG) model. The Hamiltonian is

Hpg = KP®(h, — hy)?. (5)

The spin variableg:, take integer values. Note that the Hamiltonian looks exactly like
that of a continuous Gaussian model. However, the restriction of the integer values
introduces a non-trivial interaction. The discrete Gaussian model is dual to the XY model
with Villain action [17];. This model is defined by the partition function

T

zy=| []dex <]‘[‘> B(©: — ©,) (6)

- Ty

1 A pioneering work on this issue is [10].
1 What is called Hamiltonian in the language of statistical mechanics is called action in the framework of Euclidean
quantum field theory.
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with
B(®) = i exp(—3 v (© — 21p)?) 7
pbo
and
% = KPS, (8)

The index V' here refers to ‘Villain'.
The XY model with ‘standard (cosine) action’ has the partition function

T

Zyy = Hd®x exp(ﬂXY Z cog®, — @Y)). )
(x,y)

-y

The standard action is the mostly discussed action for an XY model. The dual of this model
is given by the partition function

z25= " T1 tne-n1 (B (10)

{h} (x.y)

where thel, are modified Bessel functions. Agaln is integer.

We finally introduce the BCSOS or F-model. The BCSOS model was introduced by
van Beijeren [2] as an SOS approximation of an interface in an Ising model on a body-
centred cubic lattice on a (001) lattice plane. For a detailed analysis of this model with
respect to roughening and surface structure, see [14, 15, 19]. The effective 2D lattice splits in
two sublattices like a checker board. In the original formulation, on one of the sublattices
the spins take integer values, whereas the spins on the other sublattice take half-integer
values. We adopt a different convention: spins on ‘odd’ lattice sites take values of the form
2n + % and spins on ‘even’ sites are of the form2 1, » integer. The Hamiltonian of the
BCSOS model can be expressed as

Hpcsos= KBCSOSZ |hy — hyl. (11)
[x.y]
The sum is over next-to-nearest-neighbour paitsy], and nearest-neighbour sping and
hy obey the constraint:, — h,| = 1. Van Beijeren [2] showed that the BCSOS model can
be transformed into the F-model, which is a special six-vertex model. The F-model can be
solved exactly with transfer matrix methods [3-5]. The roughening transition occurs at

K§e395=1In2. (12)

For K \| KR, the correlation length behaves like

1 2 K - K
£BCSOS~ Zexp SN k=R (13)
4 " \8/in2 Kr

2.3. Renormalization group flow of interface models

It is believed (though not proven rigorously) that, in the vicinity of the fixed point relevant
for the KT transition, the RG flow of SOS models and also of the 3D Ising model interface
is well described by two parametefs and z [1]. The two parameters are the inverse
temperature and a fugacity
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The 2D sine—Gordon model is especially suited to discuss the flow of these parameters
with the length scale, since this model contginsndz as bare parameters in its Hamiltonian:

1
HS® = 5 D (@ —¢y)*—z ) cod2rg,) (14)
(x, ) x

where thep, are real numbers. For the continuum version of the model, with a momentum
cut-off, one can derive the parameter flow under infinitesimal RG transformations [1]. It is
given by

&= —2z° 2=—xz (15)

wherez = constant z andx = 78 — 2. The constant depends on the particular cut-off
scheme used. The derivative is taken with respect to the logarithm of the cut-off scale.

For largex the fugacityz flows towardsz = 0. The large distance behaviour of the
model is therefore that of a Gaussian model (without a mass term). For amalfrows
with increasing length scale. The theory is therefore massive, i.e. has finite correlation
length. The critical trajectory separates these two regions in the coupling constant space. It
ends at a Gaussian fixed point characterized: sy 0 or 8 = 2/7. On the critical trajectory
the fugacity vanishes as

2(t) = (16)

zal +1t
wheret is the logarithm of the cut-off scale. Equations (15) are the basis for KT theory.

Its immediate consequences are derived in statistical mechanics text books, see for example
[20]. For instance, the correlation length in the smooth phase of an SOS model should
diverge like

K — Kr
Kr

when K — Kgr. Note that this behaviour is precisely the one found for the BCSOS model
by exact solution (cf equation (13)).

We would like to emphasize another important consequence of the KT equations that
becomes apparent from the solution equation (16): at criticality, the fugacity, which
parametrizes the deviation of the theory from a massless Gaussian model, decays with
increasing scale = In L, only like (InL)~1. In lattice studies/ is more or less the lattice
extension. Therefore, any method that is based on an observation of the Gaussian behaviour
at long distance, suffers strongly from finite fugacity corrections even on very large lattices.

£~ Aexp(CkY?) K =

(17)

3. The matching method

The method of [6] is closely related to the finite size scaling methods proposed by
Nightingale [21] and Binder [22]. No attempt is made to compute the RG flow of the
couplings explicitly, but rather the RG flow is monitored by evaluating quantities that are
primarily sensitive to the lowest frequency fluctuations on a finite lattice. One should stress
that the method does not use any of the quantitative results of KT theory. Merely the
qualitative result that there are two important coupling parameters in the flow is used.

In order to separate the low-frequency modes of the field a block spin transformation
[23,24] is used. Blocked systems of sizex [ are considered. The sizB of a block
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(measured in units of the original lattice spacing) is then giverBby: L/I, whereL is
the linear size of the original lattice. The linear blocking procedure defined by

¢X = 372th (18)

xeX

where X labels square blocks of a linear extensignis used. This linear blocking rule has
the half-group property that the successive application of two transformations with a scale
factor of B have exactly the same effect as a single transformation with a scale factor of
B2.

Motivated by the perturbation theory of the sine—Gordon model, two types of
observables are chosen: those that are ‘sensitive’ to the flow of the kinetic term (flow
of K), and those that are sensitive to the fugacity (periodic perturbation of a massless
Gaussian model). For the first type of observables

A= ((@x — ¢v)?) (19)
whereX andY are nearest neighbours on the block lattice, and
Az = ((¢x — $2)°) (20)

where X and Z are next-to-nearest neighbours, are chosen. Note that these quantities are
only defined forl > 1. As a monitor for the fugacity the following set of quantities (defined
fori =1, 2,4 and 8) is taken:

Az = (cog1- 2nox)) Agq = (COS2- 2 Px)). (21)

3.1. Determination of the roughening coupling

There are two parameters which have to be adjusted in order to match the RG flow of an
SOS model or of the Ising interface with that of the critical BCSOS model: the coupling
KS of the solid-on-solid or Ising model and in addition the rabio= BS/B® = LS/LB

of the lattice sizes (and hence the block sizes) of the SOS or Ising model and the BCSOS
model. In general & # 1 is necessary to compensate for the different starting points of
the two models on the critical RG trajectory [6]. For the proper values of the roughening
coupling K3 and the matching constahtobservables of the SOS and the BCSOS model
match like

A7 (b B, KJ) = AP/(B, K§) + O(B™) 22)

wherei labels the observable ardhe size of the blocked lattice. The(® “) corrections
are due to irrelevant operators.is the correction to the scaling exponent. The perturbation
theory of the sine—Gordon model suggests- 2.

In order to obtain numerical estimates for the roughening cougig@nd the matching
factor b for a given lattice sizeLB of the BCSOS model, we require that equation (22) is
exactly fulfilled for two block observables.

We solve the system of two equations for the two observablesind A;; numerically
by first computing ther,(b) and Kf,(b) that solve the single equations for a given value
of b. The intersection of the two curvdéfl(b) and Kfl(b) gives us then the solution of
the system of two equations. For an illustration of this method see figures 5 and 6 of [6].

In [6] we demonstrated that the corrections to scaling for the observalemd A,
for SOS models are similar to those in the massless continuous Gaussian model. Therefore
we considered the ‘improved’ observalilg which is defined as follows:

AP (c0)

Di(L) = ———
1(L) A(lo)(L)

AL(L). (23)
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A is computed for the massless Gaussian model defined by
1
Ho= 2% (Y — ¥ 24
0= z y)(lﬂ vy) (24)

An improved quantityD, is defined analogously. Explicit results faﬁ") andAéO) are given
in table 1.

Table 1. Exact results fom(lo) and A(ZO) as functions of the size of the fundamental lattiég (
and the size of the blocked latticH.( The last row contains values extrapolated.te= co.

© © © © © ©
L Al,2 A2,2 Al,4 A2,4 Al.8 AZ,S

16 0.1231474 0.1718750 0.2439180 0.326 0905 0.3177271 0.4230146
24 0.1205651 0.168 9815 0.234 1466 0.3156629 0.2815115 0.3834000
32 0.1196545 0.167 9687 0.2306619 0.3119780 0.268 2336 0.369 1650
40 0.1192317 0.167 5000 0.2290354 0.310 2652 0.2619443 0.3624936
48 0.1190016 0.167 2454 0.228 1480 0.309 3327 0.258 4828 0.358 8444
56 0.1188628 0.1670918 0.2276114 0.308 7697 0.256 3784 0.356 6345
64 0.1187726 0.166 9922 0.227 2625 0.308 4039 0.2550051 0.3551961
80 0.1186664 0.166 8750 0.2268516 0.3079734 0.2533820 0.3535002
96 0.1186088 0.166 8113 0.226 6280 0.307 7394 0.2524963 0.3525768
112 0.1185740 0.166 7730 0.2264931 0.307 5982 0.2519608 0.3520192
128 0.1185514 0.166 7480 0.226 4055 0.307 5066 0.2516126 0.3516570
160 0.1185248 0.166 7187 0.226 3024 0.307 3988 0.2512025 0.3512307
192 0.1185104 0.166 7028 0.226 2464 0.307 3402 0.2509794 0.3509989
224 0.1185017 0.166 6932 0.226 2126 0.307 3049 0.250 8448 0.3508592
256 0.1184960 0.166 6870 0.226 1907 0.307 2820 0.2507573 0.3507684
384 0.1184858 0.166 6757 0.226 1509 0.307 2403 0.2505986 0.3506036
512 0.1184822 0.1666718 0.226 1370 0.307 2258 0.2505429 0.3505459
00 0.118478 0.166 667 0.226119 0.307 207 0.250471 0.350472

Obviously this modification does not affect the largebehaviour since4(1°)(L) =

A(lo)(oo) + O(L~?). It turns out that the results for our largest lattice sizes are virtually
unaffected by this kind of improvement.

3.2. Determination of non-universal constants

The matching programme also allows one to determine the non-universal constants appearing
in formulae describing the divergence of observables near the roughening transition. In
[6] we showed that the two non-universal parametérsind C determining the critical
behaviour of the correlation length, (cf equation (17)), can be determined from information
of the matching procedure. For one of the models matched with the BCSOS model, one
finds

ASOS= bmABCSOS (25)
CSOS: qfl/ZCBCSOS (26)

where the parameter$®¢S©S and CBCSOS can easily be extracted from equation (13). If

8AEFSOS/aAi,]

k= 9KBCSOS [ 5k

(27)
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where quantities have to be taken at the roughening couplings, is the same for all observables,
which is the case for our data, thgnis given by
KRS,OS

qg= 7K|§CSOSR' (28)

For a more detailed discussion see [6].

4. Numerical results

We simulated the BCSOS model at its critical coupliK§©S°S = $In2 using the loop
algorithm of Evertzet al [25]. One has to note that periodic boundary conditions of the F-
model do not correspond to periodic boundary conditions of the BCSOS model. Therefore
updates of loops that wind around the lattice are forbidden.

We performed 10 measurements for all lattices sizes considered. We have chosen the
number of loop updates between two successive measurements such that the autocorrelation
times were about 1.

In addition to the observables;; we measured the interface thickness, the total energy
E and A;; x E, which is needed to compute derivatives of the observables with respect to
the coupling. In order to save disc space we accumulated 1000 measurements before writing
to the file. The statistical errors were computed by jackknifing tHeptébinned data. As
random number generator, we used a combination of three shift register generators.

We checked the reliability of the updating program by comparing the estimates from
10° measurements fok. = 4 with the exact results obtained by explicitly averaging over
all BCSOS configurations. Our data are also consistent with those of [8]. In [8] lattices
of size up toL = 96 were used, 4 10° measurements were performed, and the GOSCAF
random number generator of the NAGLIB was used. Note also that the computer programs
of [8] were written independently of the programs used in the present study.

The results for the BCSOS observables are summarized in tables 2 and 3. Our estimates
for the slopes of the observables are given in tables 4 and 5. With slope we mean the
derivative of the observables with respect to the couplffSCS taken at the critical
value.

We then performed the simulations for the ASOS, the DG and the dual of the XY model.
The simulations of the ASOS and DG model were performed using a demon version [26]
of the Valleys-to-Mountains reflection (VMR) algorithm [27]. The simulation of the dual
XY model was performed using the standard version of the VMR algorithm. In both cases
we used the GO5CAF routine of the NAGLIB as random number generator.

Again we performed 10measurements and accumulated 1000 measurements before
writing to the file. In order to obtain estimates for the observables in a neighbourhood
of the simulation point, we employed a second-order Taylor expansion (note that the
prebinning forbids the use of a reweighting technique). We thus computed the first and
second derivatives of the observables,

dA

qi = (1A — (HA) (29)
and

d?A 2 2 2

gz = oA - 2(H)(HA) + 2(H)?(A) — (H?)(A) (30)

for the ASOS and the DG model. In the XY case analogous formulae were derived. We
carefully checked by comparing with results obtained from simulations at shifted couplings
that the Taylor expansion of thé;; to second order was sufficiently precise.
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Table 2. Monte Carlo results for the; obtained at the critical coupling of the BCSOS model.
The block-observableg; are defined in the textL is the original lattice size, andis the size
of the blocked system.

L I A1 Az As As
16 1 0.265 11(30) 0.067 37(26)
24 1 0.24004(31) 0.05437(25)
32 1 0.22572(32) 0.047 72(25)
40 1 0.21526(31) 0.04341(24)
48 1 0.207 78(30) 0.03959(24)
56 1 0.20157(31) 0.03704(24)
64 1 0.196 56(33) 0.03571(24)
80 1 0.18884(33) 0.03252(25)
96 1 0.18209(34) 0.03032(25)
112 1 0.17797(35) 0.028 80(25)
128 1 0.17399(33) 0.02750(23)
160 1 0.167 04(37) 0.025 29(26)
192 1 0.163 41(40) 0.02419(26)
224 1 0.159 35(41) 0.022 65(26)
256 1 0.156 16(42) 0.02188(26)
16 2 0.085 740(27) 0.117 435(45) 0.22382(18) 0.05597(13)
24 2 0.083 135(26) 0.115 240(43) 0.20229(18) 0.04436(12)
32 2 0.082 161(25) 0.114 434(42) 0.18981(19) 0.03851(12)
40 2 0.081661(24) 0.113976(41) 0.18079(19) 0.03444(12)
48 2 0.081351(24) 0.113660(41) 0.17409(18) 0.03174(12)
56 2 0.081129(24) 0.113497(41) 0.168 88(19) 0.02975(12)
64 2 0.080 932(24) 0.113249(41) 0.164 49(20) 0.02812(12)
80 2 0.080 719(24) 0.113 064(41) 0.157 67(20) 0.02567(12)
96 2 0.080541(24) 0.112855(41) 0.15218(21) 0.02401(12)
112 2 0.080422(24) 0.112 743(41) 0.148 34(21) 0.02275(12)
128 2 0.080 306(22) 0.112617(38) 0.144 85(20) 0.02145(11)
160 2 0.080 165(25) 0.112 424(42) 0.139 16(23) 0.01983(12)
192 2 0.080 055(25) 0.112278(43) 0.13567(24) 0.01848(12)
224 2 0.080 008(26) 0.112 258(44) 0.132 25(25) 0.01763(12)
256 2 0.079 953(26) 0.112 235(45) 0.129 36(26) 0.016 99(13)

We performed the simulations at the previously best known estimates for the roughening
couplings [6], namelyk J¢ = 0.6645, K{*5°S = 0.8061, andsy’ = 1.1197.

In order to keep the length of this paper within reasonable bounds, we present the
numerical results only for the XY model, see tables 6 and 7. The tables for the other
models are available from the authors upon request.

Finally we performed the simulations for the Ising model. The simulations were
performed using the VMR algorithm [27] adapted to the Ising interface as discussed in
[12, 28].

A number of technical improvements led to a reduction of the CPU time required for a
given statistic by a factor of about 4 compared with the code used in [8, 12, 28].

We performed the simulations at the previously best known estimate for the roughening
couplings [8],K|, = 0.407 54.

We performed % 10° to 8x 10° measurements for lattice sizes ranging fronx32x 31
to 192x 192 x 31. Again we prebinned the results of 1000 measurements before writing
to disc.

For the Ising interface we also computed the Taylor expansion of the observables to
second order.
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Table 3. Continuation of table 2.

L 1 Aq Az A3z Ag
16 4 0.176651(27) 0.230216(40) 0.221936(80) 0.077 948(65)
24 4 0.165308(24) 0.219807(37) 0.194147(82) 0.052961(63)
32 4 0.161166(23) 0.215927(35) 0.179384(82) 0.043583(61)
40 4 0.159116(22) 0.213952(35) 0.169635(82) 0.038175(60)
48 4 0.157915(22) 0.212736(34) 0.162291(81) 0.034 469(59)
56 4 0.157067(22) 0.211902(34) 0.156 869(82) 0.031988(59)
64 4 0.156 463(21) 0.211246(34) 0.152173(85) 0.029793(59)
80 4 0.155714(21) 0.210486(34) 0.145120(86) 0.026 922(58)
96 4 0.155185(22) 0.209912(34) 0.139701(89) 0.024 779(59)
112 4 0.154811(21) 0.209486(34) 0.135546(90) 0.023 253(58)
128 4 0.154514(20) 0.209 164(31) 0.131951(85) 0.021 861(53)
160 4 0.154099(22) 0.208 674(35) 0.126 456(96) 0.019967(59)
192 4 0.153818(22) 0.208 360(35) 0.12257(10) 0.018579(58)
224 4 0.153583(22) 0.208 080(35) 0.11912(10) 0.017 534(58)
256 4 0.153391(23) 0.207 869(36) 0.11647(11) 0.016 720(59)
16 8 0.265665(22) 0.325828(30) 0.345213(51) 1.000000
24 8 0.216 030(16) 0.280733(24) 0.227 866(37) 0.105810(34)
32 8 0.196 646(14) 0.264669(22) 0.205656(38) 0.072017(32)
40 8 0.188911(14) 0.257 187(21) 0.189 140(37) 0.055770(31)
48 8 0.184 346(13) 0.252912(20) 0.179067(36) 0.048 696(30)
56 8 0.181606(13) 0.250 139(20) 0.171361(37) 0.043493(30)
64 8 0.179710(13) 0.248 261(20) 0.165313(38) 0.039956(30)
80 8 0.177 383(12) 0.245 856(20) 0.156 139(38) 0.034926(29)
96 8 0.175951(12) 0.244 337(20) 0.149442(40) 0.031601(30)
112 8 0.174995(12) 0.243293(20) 0.144178(39) 0.029200(29)
128 8 0.174309(11) 0.242532(18) 0.139959(37) 0.027 326(27)
160 8 0.173355(12) 0.241 458(20) 0.133345(41) 0.024585(29)
192 8 0.172733(12) 0.240736(20) 0.128466(43) 0.022 659(29)
224 8 0.172270(12) 0.240 186(20) 0.124527(44) 0.021187(29)
256 8 0.171898(13) 0.239742(20) 0.121 338(46) 0.020028(29)

In the case of the Ising interface we performed, in addition to the matching with the
BCSOS model, the matching with the ASOS modelkg}>°S = 0.806 08, which is our
present estimate of the roughening coupling for the ASOS model. For this purpose we
performed additional simulations of the ASOS modelk&>°S = 0.806 08 for the lattice
sizes 24, 48, 56, 80, 112, and 160. The idea behind the matching with the ASOS model
is that corrections to scaling in the ASOS model are similar to those of the Ising interface.
Therefore it should be possible to obtain reliable estimates for the roughening coupling from
smaller lattice sizes this way than from the matching with the BCSOS model.

The total CPU requirement for all our simulations accumulates to nearly 4 years on
typical modern workstations. For an overview of the lattice sizes employed and the CPU
resources needed for the various models, see table 8.

We extracted all our estimates from the matching of the two observdhlesnd A3
(the last column in the tables). Here the convergence seems optimal.

To obtain estimates for the roughening couplings and the matéhinge employed the
following

Rule. Start with the largest block lattice size, ile= 8 (the statistical errors are the
smallest here). As a first estimaif take the value for the largest lattice sizeavailable.



The roughening transition of Ising and solid-on-solid models 73

Table 4. Monte Carlo results for the derivatives of thg with respect to the coupling, taken
for the BCSOS model at the critical coupling. The block observaltleare defined in the text.
L is the original lattice size, andis the size of the blocked system.

L 1 A Az As As
16 1 4.9725(59) 2.2881(60)
24 1 5.5222(88)  2.2951(89)
32 1 5.888(12)  2.285(12)
0 1 6.216(14)  2.304(15)
48 1 6.463(17)  2.310(17)
56 1 6.659(20)  2.326(20)
64 1 6.839(23)  2.289(23)
80 1 7.131(29)  2.308(28)
9% 1 7.340(34)  2.319(34)
112 1 7.526(40)  2.260(40)
128 1 7.714(42)  2.308(42)
160 1 8.079(59)  2.286(57)
192 1 8.202(71)  2.358(69)
224 1 8.478(81)  2.432(79)
256 1 8.719(95)  2.348(91)

16 2 —0.54495(72) —0.7764(12) 3.9804(37) 1.6789(32)
24 2 —0.56652(96) —0.8146(16) 4.4235(56) 1.6717(47)
32 2 -05876(12) —0.8476(20) 4.7222(73)  1.6559(59)
40 2 —0.6055(15) —0.8725(25) 4.9708(89) 1.6655(74)
48 2 -0.6208(17) —0.8961(29) 5.172(11)  1.6574(88)
56 2 —0.6331(20) —0.9126(34) 5.345(13)  1.659(10)
64 2 —0.6469(23) —0.9316(38) 5.484(14)  1.642(12)
80 2 —0.6644(28) —0.9587(47) 5.744(18)  1.651(14)
96 2 -0.6806(33) —0.9807(56) 5.907(21)  1.620(17)
112 2 -0.6822(39) -0.9882(67) 6.056(25)  1.659(20)
128 2 —0.7079(40) —1.0227(68) 6.189(26)  1.639(21)
160 2 —0.7199(55) —1.0320(94) 6.474(36)  1.641(29)
192 2 —0.7412(64) —1.072(11) 6.571(44)  1.642(35)
224 2 —0.7613(75) —1.103(13)  6.734(50)  1.655(40)
256 2 —0.7748(88) —1.121(15) 6.939(58)  1.592(46)

Then check whether the estimate ig-2ompatible with the results (also fér= 8) for

the next two smaller lattice sizeso Zompatibility of two estimates:;, m, with statistical
errorses, e, here means thain, —m;| < 2 [e§+e§]1/2. Then also check thes2consistency

of E; with the estimates for the three largest availablgalues forl = 4 andl = 2. If the
estimates are consistent, take as the final estimate. Otherwise restart the whole procedure
with [ = 4, i.e. take as the first estimaig the value from the largedt and/ = 4. If there

is again a failure, restart at= 2.

Given that the corrections die out like? our rule ensures that systematic errors in the
determination of the roughening coupling are smaller than the statistical errors quoted.

We invite the careful reader to go through this procedure in the case of the XY model
(tables 6 and 7). Our final estimates for the critical couplings and the matahirtggether
with the values of and L where the decision procedure stopped, are given in table 9.

In order to determine the non-universal constasitand C we need estimates for the
ratios of slopesk defined in equation (27). These ratios for the different observables and for
the different block/lattice sizes are presented (for the XY model as an example) in table 10.
From this table, and from the corresponding tables for the other SOS models and the Ising
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Table 5. Continuation of table 4.

L ) Aq Az A3z Ag
16 4 —1.02443(81) —1.3944(12) 2.9483(20) 1.5854(17)
24 4 —1.0343(10) —1.4308(15) 3.2837(29) 1.4291(24)
32 4 -1.0626(12) —1.4790(18) 3.5337(36) 1.3832(30)
40 4 —-1.0909(14) -—1.5208(22) 3.7292(44)  1.3796(37)
48 4 —1.1165(17) —1.5573(26) 3.8885(51) 1.3631(44)
56 4 —1.1395(19) -1.5901(30) 4.0296(61) 1.3619(51)
64 4 —1.1596(21) -—1.6176(33) 4.1442(67) 1.3456(58)
80 4 —1.1943(26) —1.6676(41) 4.3474(85) 1.3524(72)
96 4 —1.2182(31) —1.7022(48) 4.491(10) 1.3459(87)
112 4 —-1.2410(36) —1.7339(56) 4.627(12) 1.3395(99)
128 4 -—-1.2668(37) —1.7680(58) 4.744(12) 1.329(10)
160 4 —1.2935(50) —1.7997(78) 4.942(17) 1.361(14)
192 4 -1.3372(59) -—1.8660(92) 5.055(20) 1.372(17)
224 4 -1.3603(68) —1.897(11) 5.186(23) 1.352(20)
256 4 —1.3771(79) —1.921(12) 5.351(27) 1.330(23)
16 8 —1.27254(71) —1.65259(97) 2.6102(15) 0.00000
24 8 —1.09526(73) —1.5480(11) 2.4655(15) 1.4653(13)
32 8 —1.09968(81) —1.5481(12) 2.7517(19) 1.4710(16)
40 8 —1.10306(92) —1.5727(14) 2.9006(22) 1.3380(19)
48 8 —1.1188(10) —1.6001(16) 3.0496(26) 1.3139(22)
56 8 —1.1344(12) -—1.6265(18) 3.1721(30) 1.2878(26)
64 8 —1.1514(13) —-1.6537(20) 3.2715(34)  1.2758(30)
80 8 —1.1828(16) —1.7011(25) 3.4528(41) 1.2607(36)
96 8 —1.2067(18) —1.7356(29) 3.5904(50) 1.2524(43)
112 8 —1.2338(21) —1.7768(33) 3.7300(58) 1.2482(50)
128 8 —1.2553(21) —1.8070(34) 3.8241(59) 1.2377(52)
160 8 —1.2906(29) —1.8574(46) 4.0041(81) 1.2439(71)
192 8 —1.3261(34) —1.9101(54) 4.1256(99) 1.2387(85)
224 8 —1.3503(39) —1.9428(62) 4.252(11) 1.240(10)
256 8 —1.3741(45) —1.9792(72) 4.382(13) 1.230(11)

model, we extracted by applying again our rule a final estimate for the ratio of sRpes
Our estimates for the non-universal constafitand C are given in table 11.

5. Comparison with previous studies

In this section we present a comparison of our present results with some previous estimates
on the critical couplingK’r and non-universal parametessand C.

Let us start with the DG model. See table 12 for two estimates from the 1970s and
some more modern results that can be compared with the present estimates. A comparison
of the findings in [31] and [32] with the estimates of [6] was presented in [6]. We would
just like to comment at the apparent-Incompatibility of the present estimate féf2¢
with that of [6]. A closer look at our data reveals that this is most likely a statistical
fluctuation: discarding thé. = 48 andL = 64 lattices from the analysis does not move
our present estimate towards the result in [6], which was obtained with the same method
and with lattices of size up ta = 32.

We now turn to the XY model. A table of previous estimates in comparison with
previously published results is given in table 13. We find our present estimates consistent
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Table 6. XY results for the matching factor obtained in the way described after equation (22).

L ) A1, A3 Az, A3 D1, A3 Do, A3
32 2 0.9176(46)  0.9381(65)  0.9007(55)  0.9273(74)
48 2 0.9239(62) 0.9307(78) 0.9148(69) 0.9235(86)
64 2 0.9206(80) 0.9275(92)  0.9148(86)  0.9231(97)
96 2 0.9362(97) 0.9386(117) 0.9335(101) 0.9365(121)
128 2 0.9376(107) 0.9356(118) 0.9362(109) 0.9345(120)
192 2 0.9275(136) 0.9331(170) 0.9266(138) 0.9324(172)
32 4 0.8896(14) 0.9035(17) 0.8601(18) 0.8820(20)
48 4 0.9080(20) 0.9162(23) 0.8923(24) 0.9045(26)
64 4 0.9172(27) 0.9231(31) 0.9082(29) 0.9165(33)
96 4 0.9263(36) 0.9300(38) 0.9217(38) 0.9266(40)
128 4 0.9364(40) 0.9363(43) 0.9340(41) 0.9345(45)
192 4 0.9287(50) 0.9271(52) 0.9273(51) 0.9260(52)
32 8 0.8421(3) 0.8622(4) 0.7731(6) 0.8149(6)
48 8 0.8760(6) 0.8903(7) 0.8329(8) 0.8610(9)
64 8 0.8890(8) 0.9009(10) 0.8629(10) 0.8825(11)
96 8 0.9118(11) 0.9199(13)  0.8988(13)  0.9109(14)
128 8 0.9185(14) 0.9245(16) 0.9109(16) 0.9191(17)
192 8 0.9267(19)  0.9297(21)  0.9227(20)  0.9269(22)
Table 7. XY results for the roughening coupling obtained in the way described after
equation (22).
L ) A1, A3 Az, A3 D1, A3 Do, A3
32 2 1.119982(94) 1.119545(117) 1.120352(105) 1.119773(133)
48 2 1.119933(90) 1.119822(120) 1.120084(98)  1.119940(130)
64 2 1.119757(95) 1.119661(114) 1.119839(100) 1.119722(119)
96 2 1.119707(86) 1.119682(101) 1.119735(89)  1.119703(104)
128 2 1.119831(92) 1.119852(102) 1.119845(94) 1.119863(104)
192 2 1.119789(92) 1.119742(114) 1.119797(93)  1.119748(115)
32 4 1.120176(48) 1.119726(53)  1.121162(52)  1.120428(59)
48 4 1.120034(46) 1.119846(51)  1.120403(50)  1.120116(55)
64 4 1.119868(45) 1.119754(52)  1.120044(47)  1.119883(55)
96 4 1.119791(41) 1.119735(49) 1.119860(42)  1.119785(51)
128 4 1.119798(41) 1.119800(48)  1.119829(42)  1.119823(48)
192 4 1.119866(42) 1.119884(47)  1.119881(43)  1.119896(48)
32 8 1.120078(32) 1.118559(33) 1.125145(34) 1.122223(39)
48 8 1.120069(29) 1.119442(29)  1.121941(28)  1.120741(33)
64 8 1.120095(26) 1.119701(28) 1.120979(28) 1.120310(30)
96 8 1.119951(26) 1.119754(26)  1.120271(26)  1.119973(27)
128 8 1.119906(24) 1.119789(26) 1.120057(25) 1.119894(27)
192 8 1.119888(22) 1.119841(24)  1.119949(23)  1.119885(24)

with our previous results in [6]. In figure 1 we have plotted the estimates for the XY
transition coupling given in table 13. The two horizontal lines give theetror range of
our present estimate.
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Table 8. The lattice sized. employed in our simulations of the various models, together with
the CPU resources needed on an ‘average modern workstation’.

Model Lattice sizes CPU
BCSOS 16, 24,32,40,48,56,64,80,96,112,128,160,192, 224,256 200 d
XY 32,48,64,96,192 70d
ASOS 32,48,64,96,128,192, 256, 384,512 440d
DG 16,24,32,48,64 15d
Ising 32,48,64,96,128,192 650 d

Table 9. Our results for the roughening couplings and the matchipgtogether with thd, L
values that were used (see rule). In the Ising model case, the index ‘a’ refers to the matching
with the BCSOS model, the index ‘b’ refers to the matching with the ASOS model.

model  Kgr Froml,L  bm From!, L
XY 1.1199(1) 4,192 0.93(1) 4,192
ASOS 0.80608(2) 8,512 2.78(3) 4,512
DG 0.6653(2) 2,64 0.32(1) 2,64

Isinga 0.40759(2) 2,192 3.20(4) 2,192
Isingb 0.40758(1) 8,192 3.21(3) 8,192

XY CRITICAL COUPLING ESTIMATE
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Figure 1. The results for the critical coupling of the two-dimensional XY model as listed in
table 13. The corresponding references to the literature are given (in square brackets) as labels
of the x-axis. The two horizontal lines give the error range of the result of the present work.

Most of the results of the other authors, also the estimates from series analysis by
Campostriniet al [39] are inconsistent with the present estimate. We conclude that in all
these cases the systematic errors due to corrections to scaling are underestimated.
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Table 10. Monte Carlo estimates for the ratio of slopes for the XY and BCSOS model block
observables, taken at the critical couplings, cf the definition in equation (27).

L ) Dq Dy A1 Az

16 1 —0.4167(14) —0.4137(17)
24 1 —0.4206(14) —0.4195(25)
32 1 —0.4249(17) —0.4227(33)
48 1 —0.4252(19) —0.4267(48)
64 1 —0.4255(24) —0.4270(67)
9% 1 —0.4257(32) —0.4410(99)
128 1 —0.4267(41) —0.439(13)
192 1 —0.4280(59) —0.413(19)
16 2 —0.4271(11) -0.4302(11) —0.4154(13) —0.4046(12)
24 2 —0.4299(13) —0.4314(13) —0.4194(13) —0.4112(17)
32 2 —0.4298(15) —0.4304(14) —0.4236(14) —0.4167(23)
48 2 —0.4288(19) —0.4285(19) —0.4244(17) —0.4195(34)
64 2 —0.4281(23) —0.4285(24) —0.4238(20) —0.4271(46)
96 2 —0.4355(33) —0.4365(33) —0.4263(25) —0.4326(70)
128 2 —0.4250(41) —0.4252(42) —0.4281(32) —0.4140(92)
192 2 —-0.4282(60) —0.4277(62) —0.4276(46) —0.412(14)
16 4 —0.41961(73) —0.42505(77) —0.4070(13) —0.3657(12)
24 4 —0.42592(89) —0.428 39(90) —0.4140(13) —0.3962(11)
32 4 —-0.42965(98) —0.43038(95) —0.4182(13) —0.4061(14)
48 4 —0.4290(12) -0.4291(11) -0.4218(13) —0.4148(21)
64 4 —0.4294(13) —0.4296(13) —0.4213(15) —0.4187(28)
96 4 —0.4324(17) —0.4323(17) —0.4250(17) —0.4236(43)
128 4 —0.4296(21) —0.4290(20) —0.4264(21) —0.4177(57)
192 4 —0.4295(30) —0.4300(29) —0.4281(29) —0.4050(85)
24 8 —0.42239(92) —0.42300(69) —0.4120(18) —0.383 03(53)
32 8 —0.42373(70) —0.42791(81) —0.4087(11) —0.3694(18)
48 8 —0.42871(87) —0.43010(86) —0.4147(13) —0.3952(12)
64 8 —0.42960(99) —0.43030(95) —0.4177(13) —0.4035(15)
96 8 —0.4320(12) —0.4328(12) —0.4204(15) —0.4159(23)
128 8 —0.4313(14) —-0.4311(13) -—0.4228(15) —0.4192(31)
192 8 —0.4311(18) —0.4307(17) -—0.4267(19) —0.4175(48)

Table 11. Our results for the non-universal constadtsand C. In the Ising model case, the
index ‘a’ refers to the matching with the BCSOS model, the index ‘b’ refers to the matching
with the ASOS model.

Model A C

XY 0.233(3) 1.776(4)

ASOS 0.695(8) 1.099(4)
DG 0.080(3) 2.438(6)

Isinga 0.80(1)  1.03(2)
Isingb 0.80(1)  1.01(1)

In the case of the ASOS model, see table 14, we only compare with our previous
estimate [6] and with an estimate by Adler from a ninth-order low-temperature series. The
series estimate has a quite large error, but is consistent with our result.
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Table 12. Comparison of our results for the DG model with previous estimates.

Authors Year KRC A c
Swendsen [29] 1977 0.77(6)
Shugardet al [30] 1978 0.68
Janke and Nather [31] 1991 0.665(5)
fit 1 0.6657(3) 0.1204(18) 2.370(11)
fit 2 0.6595(3) 0.0287(7) 2.812(14)
Evertzet al [32] 1993 0.662(3)
Hasenbusclet al [7, 6] 1992/94  0.6645(6) 0.078(5) 2.44(3)
Hasenbusch and Pinn, this work 1996 0.6653(2) 0.080(3) 2.438(6)

Table 13. Comparison of our results for the XY model with previous estimates.

Authors Year KXY A c

Baillie and Gupta [33] 1991 1.1218 0.2129 1.7258
Baillie and Gupta [34] 1992 1.119(6)

Biferale [35] 1989 1.112(2) 1.74(20)
Hasenbusclet al [6] 1992/94  1.1197(5) 0.223(13) 1.78(2)
Olsson [36] 1994 1.12082(25) 1.585(9)
Olsson [37] 1995 1.12091(13) 1.59(2)
Schultka and Manousakis [38] 1994 1.1173(50) 1.800(2)
Campostriniet al [39] 1996 1.1166(4)

Hasenbusch and Pinn, this work 1996 1.1199(1) 0.233(3) 1.776(4)

Table 14. Comparison of our results for the ASOS model with previous estimates.

Authors Year KRSOS A c
Shugardet al [30] 1978 0.81

Adler [40] 1987 0.787(24)

Hasenbusclet al [7, 6] 1992/94 0.8061(3)  0.70(8)  1.14(2)

Hasenbusch and Pinn, this work 1996 0.80608(2) 0.695(8) 1.099(4)

We conclude this section with a comparison of the Ising interface estimates, see table 15.
Here we find that all the cited estimates of the roughening couplings are consistent with each
other. Note, however, the large errors in the estimates that were obtained with techniques
other than the matching method. The estimate of Moml [41] for A seems to be the

result of a wrong method.

6. Conclusions and outlook

By increasing the statistics by a factor of about 100 and by also using larger lattices compared
to [6], we obtained the most accurate estimates for the roughening couplings of the Ising
interface, the ASOS model, the DG model and the 2D XY model published so far.
contrast to other methods, systematical errors are under control. We believe that the strong
discrepancies in the estimates of the XY critical coupling of other authors with our results

are due to neglection or incomplete handling of the corrections to scaling.
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Table 15. Comparison of our results for the Ising model with previous estimates. The index
‘a’ refers to matching with the BCSOS model, whereas the ‘b’ means matching with the ASOS

model.

Authors Year Kk A Cc
Weekset al [10] 1973 0.39

Burkner and Stauffer [11] 1983 0.396(22)

Adler [40] 1987 0.404(12)

Mon et al [41] 1988 0.410(16) 9.8(2.0) 1.36(6)
Mon et al [42] 1990 0.409(4)

Hasenbusch [7] 1992  0.4074(3)

Hasenbusclet al [8] 1996 0.40754(5) 0.74(2) 1.03(2)

Hasenbusch and Pinn, this work, a 1996 0.40759(2) 0.80(1) 1.03(2)
Hasenbusch and Pinn, this work, b 1996  0.40758(1) 0.80(1) 1.01(1)

The matching procedure converges like? while other methods that rely on analytic
results derived from KT theory are plagued by corrections logarithmic in the lattice size.
In addition to the precise numbers for the roughening coupling and other non-universal
constants the matching provides an unambigous confirmation of the KT nature of the phase
transition of the models considered. It is interesting to compute the observables used for
the matching method for the sine—Gordon model in perturbation theory. This will allow
one to rederive the KT flow equations from finite size scaling. Furthermore, it will provide
guantitative information about the RG flow, in particular about the critical trajectory, which
can be compared with the numerical results given in the present paper.

Acknowledgments

A large part of the simulations have been performed on the SR2001 of Hitachi Europe,
Ltd. The remaining part of the simulations was done on workstations of the Indiitut f
Numerische und Instrumentelle Mathematik der Univéatsiflinster and of the DAMTP,
Cambridge University. This work was supported by the Leverhulme Trust under grant
16634-A0Z-R8 and by PPARC.

References

L

To give only a few references:
Kosterliz J M and Thoules D J 1973J. Phys. C: Solid State Phy§.1181
Kosterliz J M 1974J. Phys. C: Solid State Phy8.1046
Chui S T and Weeks J D 197hys. RevB 14 4978
Jo J V, Kadanoff L P, Kirkpatrick S and Nelsd R 1977Phys. RevB 16 1217
Ohta T and Kawasaki K 197Brog. Theor. Phys60 365
Amit D J, GoldschmitlY Y and Grinstein G 198@. Phys. A: Math. Genl3 585
[2] van Beijeren H 197Phys. Rev. Lett38 993
[3] Lieb E H 1967Phys. Rev162 162
[4] Lieb E H and Wu F Y 1972Phase Transitions and Critical Phenomewal 1, ed C Domb and N S Green
(New York: Academic)
[5] Baxter R J 1982Exactly Solved Models in Statistical Mechan{d&w York: Academic)
[6] Hasenbusch M, Marcu M and Pinn K 19%hysica208A 124
[7] Hasenbusch M 199PhD ThesidJniversi@t Kaiserslautern
[8] Hasenbusch M, Meyer S andi2 M 1996J. Stat. Phys85 383
[9] Blote H W J,Luijten E and Hering J R 1995J. Phys. A: Math. Ger28 6289
[10] Weeks J D, GilmeG H and Leary H J 1973Phys. Rev. Lett31 549



80

(11]
[12]
(23]

[14]
[15]

[16]

[17]
(18]

[19]
[20]
[21]
[22]
(23]
[24]

[25]
(26]
[27]
(28]
[29]
(30]
(31]
(32]
(33]
(34]
(35]
(36]
(37]
(38]
(39]
(40]
(41]
(42]

M Hasenbusch and K Pinn

Burkner E and Stauffer D 1983. Phys.B 53 241

Hasenbusch M and Pinn K 19%hysical92A 342

Abrahan D B 1986Phase Transitions and Critical Phenomewal 10, ed C Domb ash J L Lebowitz (New
York: Academic)

van Beijeren H and Nolden | 1983tructure and Dynamics of Surfaces Il (Topics in Current Physiced3)
W Schommers and P van Blanckenhagen (New York: Springer)

Forgacs G, Lipowsky R and Nieuwenhuizen Th M 19Hase Transitions and Critical Phenomewval 14,
ed C Domb ad J L Lebowitz (New York: Academic)

Gallet F, Balibar S and Rolley E 1987 Physique48 353, 369

Robinson | K, Vlieg E, Hornis H and CorgleE H 1991Phys. Rev. Lett67 1890

Hakkinen H, Merikoski J, Manninen M, Timonen J and Kaski K 19948/s. Rev. Letfr0 2451

Savit R 1980Rev. Mod. Phys52 453 and references therein

Yamamoto H 197%rog. Theor. Phys61 363

Samuel S 197®hys. RevD 18 1916

Swendse R H 1978Phys. RevB 17 3710

Nienhuis B 1984J. Stat. Phys34 731

Nolden | 1990 Equilibrium crystal shap&hD ThesisUtrecht

ltzykson C and Drou# J M 1989Statistical Field TheornfCambridge: Cambridge University Press)

Nightingak M P 1976Physica83A 561

Binder K 1981Z. Phys.B 43119

Kadanof L P 1966 Physics2 263

Wilson K G 1974Physica73 119

Wilson K G and Kogut J 197#hys. RepC 12 75 and references therein

Evertz H G, Marcu M and Lana G 1993hys. Rev. Let{70 875

Creutz M 1983Phys. Rev. Lett50 1411

Evertz H G, Hasenbusch M, Marcu M, Pinn K and Solomon S 1BAys. Lett.254B 185

Hasenbusch M and Meyer S 19%hys. Rev. Lett66 530

Swendse R H 1977Phys. RevB 155421

Shugard W J, WeekJ D and GilmeG H 1978Phys. Rev. Let41 1399

Janke W and Nather K 199Rhys. Lett.157A 11

Evertz H G, Hasenbusch M, Marcu M and Pinn K 1928ysical99A 31

Baillie C F and Gupta R 199lucl. Phys.B (Proc. Suppl.20 669

Baillie C F and Gupta R 199Rhys. RevB 45 2883

Biferale L and Petronzio R 1988ucl. PhysB 328677

Olsson P 1994hys. Rev. Lettr3 3339

Olsson P 199%hys. RevB 52 4526

Schultka N and Manousakis E 19%%hys. RevB 49 12071

Campostrini M, Pelisetto A, Rossi P and Vicari E 19PBys. RevB 54 7301

Adler J 1987Phys. RevB 36 2473

Mon K K, Wansleben S, LandaD P and Binder K 198®hys. Rev. Lett0 708

Mon K K, Landas D P and Stauffer D 199Phys. RevB 42 545



