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Abstract. We study the roughening transition of the dual of the two-dimensional (2D) XY
model, of the discrete Gaussian model, of the absolute value solid-on-solid model and of the
interface in an Ising model on a three-dimensional (3D) simple cubic lattice. The investigation
relies on a renormalization group finite size scaling method that was proposed and successfully
tested a few years ago. The basic idea is to match the renormalization group flow of the
interface observables with that of the exactly solvable body-centred solid-on-solid (BCSOS)
model. Our estimates for the critical couplings areβXY

R = 1.1199(1), KDG
R = 0.6653(2) and

KASOS
R = 0.806 08(2) for the XY model, the discrete Gaussian model and the absolute value

solid-on-solid model, respectively. For the inverse roughening temperature of the Ising interface
we findK Ising

R = 0.407 58(1). To the best of our knowledge, these are the most precise estimates
for these parameters published so far.

1. Introduction

Among the phase transitions that occur in 2D or effectively 2D statistical systems, those of
the so-called Kosterlitz–Thouless (KT) type [1] belong to the most challenging. The KT
phase transition is of infinite order: the free energy and all its derivatives stay finite at the
transition point. Despite the relatively simple arguments that suggest the existence of such
a transition in a variety of systems, a rigorous proof of the KT nature of the phase transition
in many physically interesting systems is still lacking. Also all of the numerical studies
(many of them Monte Carlo studies of the 2D XY model) could not provide an unambigious
confirmation of the KT scenario. A number of references will be given in section 5.

The reason for the problem is the appearance of corrections to scaling that vanish only
logarithmically with the system size. Most of the investigations based on simulations of
KT models on finite lattices suffer from these corrections.

Note, however, that there exists at least one 2D lattice model, which has beenproven
to undergo a KT transition by exact solution. This is the body-centred solid-on-solid
(BCSOS) model [2], the configurations of which are, up to boundary conditions, in one-to-
one correspondence with those of a special six-vertex model [3–5], the F-model.

A few years ago we proposed a method that allows one to investigate the KT transition
of a given model by comparing its block spin renormalization group (RG) flow (on finite
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64 M Hasenbusch and K Pinn

lattices) with that of the BCSOS model [6, 7]. A matching of the two RG flows at long
distance (large blocks) demonstrates that the models belong to the same universality class,
which is the KT class here.

In contrast to the usual approaches, the method introduces systematic errors that decay
like L−2, whereL is the size of the lattices involved in the computations.

Our approach has been successfully applied to the absolute-value solid-on-solid (ASOS)
model, the discrete Gaussian (DG) model and the dual of the standard XY model in two
dimensions [6]. Successful applications to the interface of the Ising model were performed
in [7], and, recently, in [8].

In the present paper we improve on the results of [6] by using larger lattice sizes and
increasing the statistics by a factor of about 100. This became affordable both by the
availability of faster computers and the use of more efficient program code.

This paper is organized as follows. In section 2 we define the models and state the
exact results for the BCSOS model relevant to our study. We briefly discuss the KT flow
equations. Section 3 is devoted to a description of the matching method. In section 4 we
present and discuss our numerical results. A comparison with previous estimates of the
critical couplings and non-universal parameters is presented in section 5. Conclusions and
an outlook follow.

2. Ising model interfaces and solid-on-solid models

2.1. Ising model interfaces

We consider the 3D Ising model on the simple cubic lattice, with Hamiltonian

H = −
∑
〈x,y〉

sxsy sx = ±1. (1)

The sites of the lattice are labelled by integer coordinatesx = (x1, x2, x3). The sum in
equation (1) is over all (unordered) nearest-neighbour pairs of sites in the lattice. The
partition function is

Z =
∑
{s}

exp(−K IH). (2)

Here, the summation is over all possible configurations of the Ising spins. The pair
interaction is normalized such thatK I = 1/(kBT ), wherekB denotes Boltzmann’s constant,
andT is the temperature.

At a critical couplingK I
c (the estimate of a recent study [9] isK I

c = 0.221 6546(10)) the
infinite volume limit of the model undergoes a second-order phase transition. ForK I > K I

c,
the system shows spontaneous breaking of the reflection symmetry.

In order to study interfaces separating extended domains of different magnetization, we
consider lattices with extensionL in the x1- andx2-directions and with extensionD in the
x3-direction. We generalize equation (1) to

H = −
∑
〈x,y〉

kxysxsy. (3)

The lattice becomes a torus by regarding the opposite boundary planes as neighbour planes.
For the Ising spinss we will apply antiperiodic boundary conditions in thex3-direction, by
letting kxy = −1 for the links that connect the uppermost with the lowermost plane. For
the other links we setkxy = 1.
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For sufficiently largeK I and large enoughL, the imposure of antiperiodic boundary
conditions forces the system to develop exactly one interface, which is a region where the
magnetization rapidly changes sign. This interface is parallel to a (001) lattice plane.

The Ising (001) interface undergoes aroughening transitionat an inverse temperature
K I

R = 1/(kBTR) that is nearly twice as large as the bulk transition couplingK I
c given above†.

In this work, we shall determine a new estimate forK I
R, and also for other parameters of

the roughening transition. For a collection of previous estimates, see section 5.
At the roughening transition, the large scale interface behaviour changes from being rigid

or smooth at low temperature to being rough at high temperature. The transition shows up
in a characteristic behaviour of various quantities. For example, in the smooth phase, the
interfacial width stays finite whenL tends to infinity, while it diverges logarithmically with
the system size in the rough phase [11, 12]. For general introductions to roughening, see
[13–15]. For comparisons of real life experiments with theory see, for example [16].

2.2. Solid-on-solid models

A fairly good approximation of the Ising interface is given by the solid-on-solid (SOS)
models to be introduced in this section. The SOS approximation amounts to ignoring
overhangs of the Ising interface and bubbles in the two phases separated by the interface.
For a review of exact results on SOS types of models, see, for example [13]. By duality
[17] and other exact transformations (see, e.g. [18]), SOS models have been shown to be
equivalent to a variety of other statistical models.

All SOS models that we shall consider have in common that they are 2D lattice spin
models.

Our first example of an SOS model is the ASOS model. It can be considered as the
SOS approximation of an (001) lattice plane interface of an Ising model on a simple cubic
lattice. The model is defined by the Hamiltonian

HASOS = KASOS|hx − hy |. (4)

The spin variableshx take integer values. Here and in the following, the Boltzmannian will
always be exp(−H). A factor 1/(kBT ), wherekB denotes Boltzmann’s constant andT the
temperature, is absorbed in the definition of the Hamiltonian.

We interpret thehx as heights with respect to a certain base. For finite positiveKASOS

the Hamiltonian will favour that neighbouring spins take similar values. WhenKASOS is
large enough, the surface will not fluctuate too wildly (smooth phase). On the other hand,
if KASOS is below a certain critical value, the surface becomes ‘rough’, and, for example,
the surface thickness diverges when the system size goes to infinity.

Let us now turn to the discrete Gaussian (DG) model. The Hamiltonian is

HDG = KDG(hx − hy)
2. (5)

The spin variableshx take integer values. Note that the Hamiltonian looks exactly like
that of a continuous Gaussian model. However, the restriction of thehx to integer values
introduces a non-trivial interaction. The discrete Gaussian model is dual to the XY model
with Villain action [17]‡. This model is defined by the partition function

ZV =
∫ π

−π

∏
x

d2x

∏
〈x,y〉

B(2x −2y) (6)

† A pioneering work on this issue is [10].
‡ What is called Hamiltonian in the language of statistical mechanics is called action in the framework of Euclidean
quantum field theory.
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with

B(2) =
∞∑

p=−∞
exp(− 1

2βV(2− 2πp)2) (7)

and

1

2βV
= KDG. (8)

The index ‘V’ here refers to ‘Villain’.
The XY model with ‘standard (cosine) action’ has the partition function

ZXY =
∫ π

−π

∏
x

d2x exp

(
βXY

∑
〈x,y〉

cos(2x −2y)

)
. (9)

The standard action is the mostly discussed action for an XY model. The dual of this model
is given by the partition function

ZSOS
XY =

∑
{h}

∏
〈x,y〉

I|hx−hy |(β
XY ) (10)

where theIn are modified Bessel functions. Againhx is integer.
We finally introduce the BCSOS or F-model. The BCSOS model was introduced by

van Beijeren [2] as an SOS approximation of an interface in an Ising model on a body-
centred cubic lattice on a (001) lattice plane. For a detailed analysis of this model with
respect to roughening and surface structure, see [14, 15, 19]. The effective 2D lattice splits in
two sublattices like a checker board. In the original formulation, on one of the sublattices
the spins take integer values, whereas the spins on the other sublattice take half-integer
values. We adopt a different convention: spins on ‘odd’ lattice sites take values of the form
2n+ 1

2, and spins on ‘even’ sites are of the form 2n− 1
2, n integer. The Hamiltonian of the

BCSOS model can be expressed as

HBCSOS= KBCSOS
∑
[x,y]

|hx − hy |. (11)

The sum is over next-to-nearest-neighbour pairs [x, y], and nearest-neighbour spinshx and
hy obey the constraint|hx − hy | = 1. Van Beijeren [2] showed that the BCSOS model can
be transformed into the F-model, which is a special six-vertex model. The F-model can be
solved exactly with transfer matrix methods [3–5]. The roughening transition occurs at

KBCSOS
R = 1

2 ln 2. (12)

ForK ↘ KR, the correlation length behaves like

ξBCSOS' 1

4
exp

 π2

8
√

1
2 ln 2

κ− 1
2

 κ = K −KR

KR
. (13)

2.3. Renormalization group flow of interface models

It is believed (though not proven rigorously) that, in the vicinity of the fixed point relevant
for the KT transition, the RG flow of SOS models and also of the 3D Ising model interface
is well described by two parametersβ and z [1]. The two parameters are the inverse
temperature and a fugacityz.
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The 2D sine–Gordon model is especially suited to discuss the flow of these parameters
with the length scale, since this model containsβ andz as bare parameters in its Hamiltonian:

HSG = 1

2β

∑
〈x,y〉

(φx − φy)
2 − z

∑
x

cos(2πφx) (14)

where theφx are real numbers. For the continuum version of the model, with a momentum
cut-off, one can derive the parameter flow under infinitesimal RG transformations [1]. It is
given by

ẋ = −z2 ż = −xz (15)

wherez = constant· z and x = πβ − 2. The constant depends on the particular cut-off
scheme used. The derivative is taken with respect to the logarithm of the cut-off scale.

For largex the fugacityz flows towardsz = 0. The large distance behaviour of the
model is therefore that of a Gaussian model (without a mass term). For smallx, z grows
with increasing length scale. The theory is therefore massive, i.e. has finite correlation
length. The critical trajectory separates these two regions in the coupling constant space. It
ends at a Gaussian fixed point characterized byx = 0 orβ = 2/π . On the critical trajectory
the fugacity vanishes as

z(t) = 1

z−1
0 + t

(16)

where t is the logarithm of the cut-off scale. Equations (15) are the basis for KT theory.
Its immediate consequences are derived in statistical mechanics text books, see for example
[20]. For instance, the correlation length in the smooth phase of an SOS model should
diverge like

ξ ' A exp(Cκ−1/2) κ = K −KR

KR
(17)

whenK → KR. Note that this behaviour is precisely the one found for the BCSOS model
by exact solution (cf equation (13)).

We would like to emphasize another important consequence of the KT equations that
becomes apparent from the solution equation (16): at criticality, the fugacity, which
parametrizes the deviation of the theory from a massless Gaussian model, decays with
increasing scalet = lnL, only like (lnL)−1. In lattice studies,L is more or less the lattice
extension. Therefore, any method that is based on an observation of the Gaussian behaviour
at long distance, suffers strongly from finite fugacity corrections even on very large lattices.

3. The matching method

The method of [6] is closely related to the finite size scaling methods proposed by
Nightingale [21] and Binder [22]. No attempt is made to compute the RG flow of the
couplings explicitly, but rather the RG flow is monitored by evaluating quantities that are
primarily sensitive to the lowest frequency fluctuations on a finite lattice. One should stress
that the method does not use any of the quantitative results of KT theory. Merely the
qualitative result that there are two important coupling parameters in the flow is used.

In order to separate the low-frequency modes of the field a block spin transformation
[23, 24] is used. Blocked systems of sizel × l are considered. The sizeB of a block
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(measured in units of the original lattice spacing) is then given byB = L/l, whereL is
the linear size of the original lattice. The linear blocking procedure defined by

φX = B−2
∑
x∈X

hx (18)

whereX labels square blocks of a linear extensionB, is used. This linear blocking rule has
the half-group property that the successive application of two transformations with a scale
factor of B have exactly the same effect as a single transformation with a scale factor of
B2.

Motivated by the perturbation theory of the sine–Gordon model, two types of
observables are chosen: those that are ‘sensitive’ to the flow of the kinetic term (flow
of K), and those that are sensitive to the fugacity (periodic perturbation of a massless
Gaussian model). For the first type of observables

A1 = 〈(φX − φY )
2〉 (19)

whereX andY are nearest neighbours on the block lattice, and

A2 = 〈(φX − φZ)
2〉 (20)

whereX andZ are next-to-nearest neighbours, are chosen. Note that these quantities are
only defined forl > 1. As a monitor for the fugacity the following set of quantities (defined
for l = 1, 2, 4 and 8) is taken:

A3 = 〈cos(1 · 2πφX)〉 A4 = 〈cos(2 · 2πφX)〉. (21)

3.1. Determination of the roughening coupling

There are two parameters which have to be adjusted in order to match the RG flow of an
SOS model or of the Ising interface with that of the critical BCSOS model: the coupling
KS of the solid-on-solid or Ising model and in addition the ratiob = BS/BB = LS/LB

of the lattice sizes (and hence the block sizes) of the SOS or Ising model and the BCSOS
model. In general ab 6= 1 is necessary to compensate for the different starting points of
the two models on the critical RG trajectory [6]. For the proper values of the roughening
couplingKS

R and the matching constantb observables of the SOS and the BCSOS model
match like

AS
i,l(b B,K

S
R) = AB

i,l(B,K
B
R)+ O(B−ω) (22)

wherei labels the observable andl the size of the blocked lattice. The O(B−ω) corrections
are due to irrelevant operators.ω is the correction to the scaling exponent. The perturbation
theory of the sine–Gordon model suggestsω = 2.

In order to obtain numerical estimates for the roughening couplingKS
R and the matching

factor b for a given lattice sizeLB of the BCSOS model, we require that equation (22) is
exactly fulfilled for two block observables.

We solve the system of two equations for the two observablesAi,l andAj,l numerically
by first computing theKS

i,l(b) andKS
j,l(b) that solve the single equations for a given value

of b. The intersection of the two curvesKS
i,l(b) andKS

j,l(b) gives us then the solution of
the system of two equations. For an illustration of this method see figures 5 and 6 of [6].

In [6] we demonstrated that the corrections to scaling for the observablesA1 andA2

for SOS models are similar to those in the massless continuous Gaussian model. Therefore
we considered the ‘improved’ observableD1 which is defined as follows:

D1(L) = A
(0)
1 (∞)

A
(0)
1 (L)

A1(L). (23)
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A
(0)
1 is computed for the massless Gaussian model defined by

H0 = 1

2

∑
〈x,y〉

(ψx − ψy)
2. (24)

An improved quantityD2 is defined analogously. Explicit results forA(0)1 andA(0)2 are given
in table 1.

Table 1. Exact results forA(0)1 andA(0)2 as functions of the size of the fundamental lattice (L)
and the size of the blocked lattice (l). The last row contains values extrapolated toL = ∞.

L A
(0)
1,2 A

(0)
2,2 A

(0)
1,4 A

(0)
2,4 A

(0)
1,8 A

(0)
2,8

16 0.123 1474 0.171 8750 0.243 9180 0.326 0905 0.317 7271 0.423 0146
24 0.120 5651 0.168 9815 0.234 1466 0.315 6629 0.281 5115 0.383 4000
32 0.119 6545 0.167 9687 0.230 6619 0.311 9780 0.268 2336 0.369 1650
40 0.119 2317 0.167 5000 0.229 0354 0.310 2652 0.261 9443 0.362 4936
48 0.119 0016 0.167 2454 0.228 1480 0.309 3327 0.258 4828 0.358 8444
56 0.118 8628 0.167 0918 0.227 6114 0.308 7697 0.256 3784 0.356 6345
64 0.118 7726 0.166 9922 0.227 2625 0.308 4039 0.255 0051 0.355 1961
80 0.118 6664 0.166 8750 0.226 8516 0.307 9734 0.253 3820 0.353 5002
96 0.118 6088 0.166 8113 0.226 6280 0.307 7394 0.252 4963 0.352 5768

112 0.118 5740 0.166 7730 0.226 4931 0.307 5982 0.251 9608 0.352 0192
128 0.118 5514 0.166 7480 0.226 4055 0.307 5066 0.251 6126 0.351 6570
160 0.118 5248 0.166 7187 0.226 3024 0.307 3988 0.251 2025 0.351 2307
192 0.118 5104 0.166 7028 0.226 2464 0.307 3402 0.250 9794 0.350 9989
224 0.118 5017 0.166 6932 0.226 2126 0.307 3049 0.250 8448 0.350 8592
256 0.118 4960 0.166 6870 0.226 1907 0.307 2820 0.250 7573 0.350 7684
384 0.118 4858 0.166 6757 0.226 1509 0.307 2403 0.250 5986 0.350 6036
512 0.118 4822 0.166 6718 0.226 1370 0.307 2258 0.250 5429 0.350 5459
∞ 0.118 478 0.166 667 0.226 119 0.307 207 0.250 471 0.350 472

Obviously this modification does not affect the largeL behaviour sinceA(0)1 (L) =
A
(0)
1 (∞) + O(L−2). It turns out that the results for our largest lattice sizes are virtually

unaffected by this kind of improvement.

3.2. Determination of non-universal constants

The matching programme also allows one to determine the non-universal constants appearing
in formulae describing the divergence of observables near the roughening transition. In
[6] we showed that the two non-universal parametersA and C determining the critical
behaviour of the correlation length, (cf equation (17)), can be determined from information
of the matching procedure. For one of the models matched with the BCSOS model, one
finds

ASOS = bmA
BCSOS (25)

CSOS = q−1/2CBCSOS (26)

where the parametersABCSOS andCBCSOS can easily be extracted from equation (13). If

R = ∂ABCSOS
i,l

∂KBCSOS

/
∂Ai,l

∂K
(27)
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where quantities have to be taken at the roughening couplings, is the same for all observables,
which is the case for our data, thenq is given by

q = KSOS
R

KBCSOS
R

R. (28)

For a more detailed discussion see [6].

4. Numerical results

We simulated the BCSOS model at its critical couplingKBCSOS
R = 1

2 ln 2 using the loop
algorithm of Evertzet al [25]. One has to note that periodic boundary conditions of the F-
model do not correspond to periodic boundary conditions of the BCSOS model. Therefore
updates of loops that wind around the lattice are forbidden.

We performed 107 measurements for all lattices sizes considered. We have chosen the
number of loop updates between two successive measurements such that the autocorrelation
times were about 1.

In addition to the observablesAi,l we measured the interface thickness, the total energy
E andAi,l ×E, which is needed to compute derivatives of the observables with respect to
the coupling. In order to save disc space we accumulated 1000 measurements before writing
to the file. The statistical errors were computed by jackknifing the 104 prebinned data. As
random number generator, we used a combination of three shift register generators.

We checked the reliability of the updating program by comparing the estimates from
108 measurements forL = 4 with the exact results obtained by explicitly averaging over
all BCSOS configurations. Our data are also consistent with those of [8]. In [8] lattices
of size up toL = 96 were used, 4× 106 measurements were performed, and the G05CAF
random number generator of the NAGLIB was used. Note also that the computer programs
of [8] were written independently of the programs used in the present study.

The results for the BCSOS observables are summarized in tables 2 and 3. Our estimates
for the slopes of the observables are given in tables 4 and 5. With slope we mean the
derivative of the observables with respect to the couplingKBCSOS, taken at the critical
value.

We then performed the simulations for the ASOS, the DG and the dual of the XY model.
The simulations of the ASOS and DG model were performed using a demon version [26]
of the Valleys-to-Mountains reflection (VMR) algorithm [27]. The simulation of the dual
XY model was performed using the standard version of the VMR algorithm. In both cases
we used the G05CAF routine of the NAGLIB as random number generator.

Again we performed 107 measurements and accumulated 1000 measurements before
writing to the file. In order to obtain estimates for the observables in a neighbourhood
of the simulation point, we employed a second-order Taylor expansion (note that the
prebinning forbids the use of a reweighting technique). We thus computed the first and
second derivatives of the observables,

dA

dK
= 〈H 〉〈A〉 − 〈HA〉 (29)

and
d2A

dK2
= 〈H 2A〉 − 2〈H 〉〈HA〉 + 2〈H 〉2〈A〉 − 〈H 2〉〈A〉 (30)

for the ASOS and the DG model. In the XY case analogous formulae were derived. We
carefully checked by comparing with results obtained from simulations at shifted couplings
that the Taylor expansion of theAi,l to second order was sufficiently precise.
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Table 2. Monte Carlo results for theAi obtained at the critical coupling of the BCSOS model.
The block-observablesAi are defined in the text.L is the original lattice size, andl is the size
of the blocked system.

L l A1 A2 A3 A4

16 1 0.265 11(30) 0.067 37(26)
24 1 0.240 04(31) 0.054 37(25)
32 1 0.225 72(32) 0.047 72(25)
40 1 0.215 26(31) 0.043 41(24)
48 1 0.207 78(30) 0.039 59(24)
56 1 0.201 57(31) 0.037 04(24)
64 1 0.196 56(33) 0.035 71(24)
80 1 0.188 84(33) 0.032 52(25)
96 1 0.182 09(34) 0.030 32(25)

112 1 0.177 97(35) 0.028 80(25)
128 1 0.173 99(33) 0.027 50(23)
160 1 0.167 04(37) 0.025 29(26)
192 1 0.163 41(40) 0.024 19(26)
224 1 0.159 35(41) 0.022 65(26)
256 1 0.156 16(42) 0.021 88(26)

16 2 0.085 740(27) 0.117 435(45) 0.223 82(18) 0.055 97(13)
24 2 0.083 135(26) 0.115 240(43) 0.202 29(18) 0.044 36(12)
32 2 0.082 161(25) 0.114 434(42) 0.189 81(19) 0.038 51(12)
40 2 0.081 661(24) 0.113 976(41) 0.180 79(19) 0.034 44(12)
48 2 0.081 351(24) 0.113 660(41) 0.174 09(18) 0.031 74(12)
56 2 0.081 129(24) 0.113 497(41) 0.168 88(19) 0.029 75(12)
64 2 0.080 932(24) 0.113 249(41) 0.164 49(20) 0.028 12(12)
80 2 0.080 719(24) 0.113 064(41) 0.157 67(20) 0.025 67(12)
96 2 0.080 541(24) 0.112 855(41) 0.152 18(21) 0.024 01(12)

112 2 0.080 422(24) 0.112 743(41) 0.148 34(21) 0.022 75(12)
128 2 0.080 306(22) 0.112 617(38) 0.144 85(20) 0.021 45(11)
160 2 0.080 165(25) 0.112 424(42) 0.139 16(23) 0.019 83(12)
192 2 0.080 055(25) 0.112 278(43) 0.135 67(24) 0.018 48(12)
224 2 0.080 008(26) 0.112 258(44) 0.132 25(25) 0.017 63(12)
256 2 0.079 953(26) 0.112 235(45) 0.129 36(26) 0.016 99(13)

We performed the simulations at the previously best known estimates for the roughening
couplings [6], namelyKDG

0 = 0.6645,KASOS
0 = 0.8061, andβXY

0 = 1.1197.
In order to keep the length of this paper within reasonable bounds, we present the

numerical results only for the XY model, see tables 6 and 7. The tables for the other
models are available from the authors upon request.

Finally we performed the simulations for the Ising model. The simulations were
performed using the VMR algorithm [27] adapted to the Ising interface as discussed in
[12, 28].

A number of technical improvements led to a reduction of the CPU time required for a
given statistic by a factor of about 4 compared with the code used in [8, 12, 28].

We performed the simulations at the previously best known estimate for the roughening
couplings [8],K I

0 = 0.407 54.
We performed 3×106 to 8×106 measurements for lattice sizes ranging from 32×32×31

to 192× 192× 31. Again we prebinned the results of 1000 measurements before writing
to disc.

For the Ising interface we also computed the Taylor expansion of the observables to
second order.
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Table 3. Continuation of table 2.

L l A1 A2 A3 A4

16 4 0.176 651(27) 0.230 216(40) 0.221 936(80) 0.077 948(65)
24 4 0.165 308(24) 0.219 807(37) 0.194 147(82) 0.052 961(63)
32 4 0.161 166(23) 0.215 927(35) 0.179 384(82) 0.043 583(61)
40 4 0.159 116(22) 0.213 952(35) 0.169 635(82) 0.038 175(60)
48 4 0.157 915(22) 0.212 736(34) 0.162 291(81) 0.034 469(59)
56 4 0.157 067(22) 0.211 902(34) 0.156 869(82) 0.031 988(59)
64 4 0.156 463(21) 0.211 246(34) 0.152 173(85) 0.029 793(59)
80 4 0.155 714(21) 0.210 486(34) 0.145 120(86) 0.026 922(58)
96 4 0.155 185(22) 0.209 912(34) 0.139 701(89) 0.024 779(59)

112 4 0.154 811(21) 0.209 486(34) 0.135 546(90) 0.023 253(58)
128 4 0.154 514(20) 0.209 164(31) 0.131 951(85) 0.021 861(53)
160 4 0.154 099(22) 0.208 674(35) 0.126 456(96) 0.019 967(59)
192 4 0.153 818(22) 0.208 360(35) 0.122 57(10) 0.018 579(58)
224 4 0.153 583(22) 0.208 080(35) 0.119 12(10) 0.017 534(58)
256 4 0.153 391(23) 0.207 869(36) 0.116 47(11) 0.016 720(59)

16 8 0.265 665(22) 0.325 828(30) 0.345 213(51) 1.000 000
24 8 0.216 030(16) 0.280 733(24) 0.227 866(37) 0.105 810(34)
32 8 0.196 646(14) 0.264 669(22) 0.205 656(38) 0.072 017(32)
40 8 0.188 911(14) 0.257 187(21) 0.189 140(37) 0.055 770(31)
48 8 0.184 346(13) 0.252 912(20) 0.179 067(36) 0.048 696(30)
56 8 0.181 606(13) 0.250 139(20) 0.171 361(37) 0.043 493(30)
64 8 0.179 710(13) 0.248 261(20) 0.165 313(38) 0.039 956(30)
80 8 0.177 383(12) 0.245 856(20) 0.156 139(38) 0.034 926(29)
96 8 0.175 951(12) 0.244 337(20) 0.149 442(40) 0.031 601(30)

112 8 0.174 995(12) 0.243 293(20) 0.144 178(39) 0.029 200(29)
128 8 0.174 309(11) 0.242 532(18) 0.139 959(37) 0.027 326(27)
160 8 0.173 355(12) 0.241 458(20) 0.133 345(41) 0.024 585(29)
192 8 0.172 733(12) 0.240 736(20) 0.128 466(43) 0.022 659(29)
224 8 0.172 270(12) 0.240 186(20) 0.124 527(44) 0.021 187(29)
256 8 0.171 898(13) 0.239 742(20) 0.121 338(46) 0.020 028(29)

In the case of the Ising interface we performed, in addition to the matching with the
BCSOS model, the matching with the ASOS model atKASOS

R = 0.806 08, which is our
present estimate of the roughening coupling for the ASOS model. For this purpose we
performed additional simulations of the ASOS model atKASOS

R = 0.806 08 for the lattice
sizes 24, 48, 56, 80, 112, and 160. The idea behind the matching with the ASOS model
is that corrections to scaling in the ASOS model are similar to those of the Ising interface.
Therefore it should be possible to obtain reliable estimates for the roughening coupling from
smaller lattice sizes this way than from the matching with the BCSOS model.

The total CPU requirement for all our simulations accumulates to nearly 4 years on
typical modern workstations. For an overview of the lattice sizes employed and the CPU
resources needed for the various models, see table 8.

We extracted all our estimates from the matching of the two observablesD2 andA3

(the last column in the tables). Here the convergence seems optimal.
To obtain estimates for the roughening couplings and the matchingbm we employed the

following

Rule. Start with the largest block lattice size, i.e.l = 8 (the statistical errors are the
smallest here). As a first estimateE1 take the value for the largest lattice sizeL available.
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Table 4. Monte Carlo results for the derivatives of theAi with respect to the coupling, taken
for the BCSOS model at the critical coupling. The block observablesAi are defined in the text.
L is the original lattice size, andl is the size of the blocked system.

L l A1 A2 A3 A4

16 1 4.9725(59) 2.2881(60)
24 1 5.5222(88) 2.2951(89)
32 1 5.888(12) 2.285(12)
40 1 6.216(14) 2.304(15)
48 1 6.463(17) 2.310(17)
56 1 6.659(20) 2.326(20)
64 1 6.839(23) 2.289(23)
80 1 7.131(29) 2.308(28)
96 1 7.340(34) 2.319(34)

112 1 7.526(40) 2.260(40)
128 1 7.714(42) 2.308(42)
160 1 8.079(59) 2.286(57)
192 1 8.202(71) 2.358(69)
224 1 8.478(81) 2.432(79)
256 1 8.719(95) 2.348(91)

16 2 −0.544 95(72) −0.7764(12) 3.9804(37) 1.6789(32)
24 2 −0.566 52(96) −0.8146(16) 4.4235(56) 1.6717(47)
32 2 −0.5876(12) −0.8476(20) 4.7222(73) 1.6559(59)
40 2 −0.6055(15) −0.8725(25) 4.9708(89) 1.6655(74)
48 2 −0.6208(17) −0.8961(29) 5.172(11) 1.6574(88)
56 2 −0.6331(20) −0.9126(34) 5.345(13) 1.659(10)
64 2 −0.6469(23) −0.9316(38) 5.484(14) 1.642(12)
80 2 −0.6644(28) −0.9587(47) 5.744(18) 1.651(14)
96 2 −0.6806(33) −0.9807(56) 5.907(21) 1.620(17)

112 2 −0.6822(39) −0.9882(67) 6.056(25) 1.659(20)
128 2 −0.7079(40) −1.0227(68) 6.189(26) 1.639(21)
160 2 −0.7199(55) −1.0320(94) 6.474(36) 1.641(29)
192 2 −0.7412(64) −1.072(11) 6.571(44) 1.642(35)
224 2 −0.7613(75) −1.103(13) 6.734(50) 1.655(40)
256 2 −0.7748(88) −1.121(15) 6.939(58) 1.592(46)

Then check whether the estimate is 2σ -compatible with the results (also forl = 8) for
the next two smaller lattice sizes. 2σ -compatibility of two estimatesm1, m2 with statistical
errorse1, e2 here means that|m1−m2| < 2 [e2

1 +e2
2]1/2. Then also check the 2σ -consistency

of E1 with the estimates for the three largest availableL values forl = 4 andl = 2. If the
estimates are consistent, takeE1 as the final estimate. Otherwise restart the whole procedure
with l = 4, i.e. take as the first estimateE1 the value from the largestL andl = 4. If there
is again a failure, restart atl = 2.

Given that the corrections die out likeL−2 our rule ensures that systematic errors in the
determination of the roughening coupling are smaller than the statistical errors quoted.

We invite the careful reader to go through this procedure in the case of the XY model
(tables 6 and 7). Our final estimates for the critical couplings and the matchingbm, together
with the values ofl andL where the decision procedure stopped, are given in table 9.

In order to determine the non-universal constantsA andC we need estimates for the
ratios of slopesR defined in equation (27). These ratios for the different observables and for
the different block/lattice sizes are presented (for the XY model as an example) in table 10.
From this table, and from the corresponding tables for the other SOS models and the Ising
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Table 5. Continuation of table 4.

L l A1 A2 A3 A4

16 4 −1.024 43(81) −1.3944(12) 2.9483(20) 1.5854(17)
24 4 −1.0343(10) −1.4308(15) 3.2837(29) 1.4291(24)
32 4 −1.0626(12) −1.4790(18) 3.5337(36) 1.3832(30)
40 4 −1.0909(14) −1.5208(22) 3.7292(44) 1.3796(37)
48 4 −1.1165(17) −1.5573(26) 3.8885(51) 1.3631(44)
56 4 −1.1395(19) −1.5901(30) 4.0296(61) 1.3619(51)
64 4 −1.1596(21) −1.6176(33) 4.1442(67) 1.3456(58)
80 4 −1.1943(26) −1.6676(41) 4.3474(85) 1.3524(72)
96 4 −1.2182(31) −1.7022(48) 4.491(10) 1.3459(87)

112 4 −1.2410(36) −1.7339(56) 4.627(12) 1.3395(99)
128 4 −1.2668(37) −1.7680(58) 4.744(12) 1.329(10)
160 4 −1.2935(50) −1.7997(78) 4.942(17) 1.361(14)
192 4 −1.3372(59) −1.8660(92) 5.055(20) 1.372(17)
224 4 −1.3603(68) −1.897(11) 5.186(23) 1.352(20)
256 4 −1.3771(79) −1.921(12) 5.351(27) 1.330(23)

16 8 −1.272 54(71) −1.652 59(97) 2.6102(15) 0.000 00
24 8 −1.095 26(73) −1.5480(11) 2.4655(15) 1.4653(13)
32 8 −1.099 68(81) −1.5481(12) 2.7517(19) 1.4710(16)
40 8 −1.103 06(92) −1.5727(14) 2.9006(22) 1.3380(19)
48 8 −1.1188(10) −1.6001(16) 3.0496(26) 1.3139(22)
56 8 −1.1344(12) −1.6265(18) 3.1721(30) 1.2878(26)
64 8 −1.1514(13) −1.6537(20) 3.2715(34) 1.2758(30)
80 8 −1.1828(16) −1.7011(25) 3.4528(41) 1.2607(36)
96 8 −1.2067(18) −1.7356(29) 3.5904(50) 1.2524(43)

112 8 −1.2338(21) −1.7768(33) 3.7300(58) 1.2482(50)
128 8 −1.2553(21) −1.8070(34) 3.8241(59) 1.2377(52)
160 8 −1.2906(29) −1.8574(46) 4.0041(81) 1.2439(71)
192 8 −1.3261(34) −1.9101(54) 4.1256(99) 1.2387(85)
224 8 −1.3503(39) −1.9428(62) 4.252(11) 1.240(10)
256 8 −1.3741(45) −1.9792(72) 4.382(13) 1.230(11)

model, we extracted by applying again our rule a final estimate for the ratio of slopesR.
Our estimates for the non-universal constantsA andC are given in table 11.

5. Comparison with previous studies

In this section we present a comparison of our present results with some previous estimates
on the critical couplingsKR and non-universal parametersA andC.

Let us start with the DG model. See table 12 for two estimates from the 1970s and
some more modern results that can be compared with the present estimates. A comparison
of the findings in [31] and [32] with the estimates of [6] was presented in [6]. We would
just like to comment at the apparent 1σ -incompatibility of the present estimate forKDG

R
with that of [6]. A closer look at our data reveals that this is most likely a statistical
fluctuation: discarding theL = 48 andL = 64 lattices from the analysis does not move
our present estimate towards the result in [6], which was obtained with the same method
and with lattices of size up toL = 32.

We now turn to the XY model. A table of previous estimates in comparison with
previously published results is given in table 13. We find our present estimates consistent
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Table 6. XY results for the matching factor obtained in the way described after equation (22).

L l A1, A3 A2, A3 D1, A3 D2, A3

32 2 0.9176(46) 0.9381(65) 0.9007(55) 0.9273(74)
48 2 0.9239(62) 0.9307(78) 0.9148(69) 0.9235(86)
64 2 0.9206(80) 0.9275(92) 0.9148(86) 0.9231(97)
96 2 0.9362(97) 0.9386(117) 0.9335(101) 0.9365(121)

128 2 0.9376(107) 0.9356(118) 0.9362(109) 0.9345(120)
192 2 0.9275(136) 0.9331(170) 0.9266(138) 0.9324(172)

32 4 0.8896(14) 0.9035(17) 0.8601(18) 0.8820(20)
48 4 0.9080(20) 0.9162(23) 0.8923(24) 0.9045(26)
64 4 0.9172(27) 0.9231(31) 0.9082(29) 0.9165(33)
96 4 0.9263(36) 0.9300(38) 0.9217(38) 0.9266(40)

128 4 0.9364(40) 0.9363(43) 0.9340(41) 0.9345(45)
192 4 0.9287(50) 0.9271(52) 0.9273(51) 0.9260(52)

32 8 0.8421(3) 0.8622(4) 0.7731(6) 0.8149(6)
48 8 0.8760(6) 0.8903(7) 0.8329(8) 0.8610(9)
64 8 0.8890(8) 0.9009(10) 0.8629(10) 0.8825(11)
96 8 0.9118(11) 0.9199(13) 0.8988(13) 0.9109(14)

128 8 0.9185(14) 0.9245(16) 0.9109(16) 0.9191(17)
192 8 0.9267(19) 0.9297(21) 0.9227(20) 0.9269(22)

Table 7. XY results for the roughening coupling obtained in the way described after
equation (22).

L l A1, A3 A2, A3 D1, A3 D2, A3

32 2 1.119 982(94) 1.119 545(117) 1.120 352(105) 1.119 773(133)
48 2 1.119 933(90) 1.119 822(120) 1.120 084(98) 1.119 940(130)
64 2 1.119 757(95) 1.119 661(114) 1.119 839(100) 1.119 722(119)
96 2 1.119 707(86) 1.119 682(101) 1.119 735(89) 1.119 703(104)

128 2 1.119 831(92) 1.119 852(102) 1.119 845(94) 1.119 863(104)
192 2 1.119 789(92) 1.119 742(114) 1.119 797(93) 1.119 748(115)

32 4 1.120 176(48) 1.119 726(53) 1.121 162(52) 1.120 428(59)
48 4 1.120 034(46) 1.119 846(51) 1.120 403(50) 1.120 116(55)
64 4 1.119 868(45) 1.119 754(52) 1.120 044(47) 1.119 883(55)
96 4 1.119 791(41) 1.119 735(49) 1.119 860(42) 1.119 785(51)

128 4 1.119 798(41) 1.119 800(48) 1.119 829(42) 1.119 823(48)
192 4 1.119 866(42) 1.119 884(47) 1.119 881(43) 1.119 896(48)

32 8 1.120 078(32) 1.118 559(33) 1.125 145(34) 1.122 223(39)
48 8 1.120 069(29) 1.119 442(29) 1.121 941(28) 1.120 741(33)
64 8 1.120 095(26) 1.119 701(28) 1.120 979(28) 1.120 310(30)
96 8 1.119 951(26) 1.119 754(26) 1.120 271(26) 1.119 973(27)

128 8 1.119 906(24) 1.119 789(26) 1.120 057(25) 1.119 894(27)
192 8 1.119 888(22) 1.119 841(24) 1.119 949(23) 1.119 885(24)

with our previous results in [6]. In figure 1 we have plotted the estimates for the XY
transition coupling given in table 13. The two horizontal lines give the 1σ error range of
our present estimate.
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Table 8. The lattice sizesL employed in our simulations of the various models, together with
the CPU resources needed on an ‘average modern workstation’.

Model Lattice sizes CPU

BCSOS 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256 200 d
XY 32, 48, 64, 96, 192 70 d
ASOS 32, 48, 64, 96, 128, 192, 256, 384, 512 440 d
DG 16, 24, 32, 48, 64 15 d
Ising 32, 48, 64, 96, 128, 192 650 d

Table 9. Our results for the roughening couplings and the matchingbm, together with thel, L
values that were used (see rule). In the Ising model case, the index ‘a’ refers to the matching
with the BCSOS model, the index ‘b’ refers to the matching with the ASOS model.

model KR From l, L bm From l, L

XY 1.1199(1) 4, 192 0.93(1) 4, 192
ASOS 0.806 08(2) 8, 512 2.78(3) 4, 512
DG 0.6653(2) 2, 64 0.32(1) 2, 64
Ising a 0.407 59(2) 2, 192 3.20(4) 2, 192
Ising b 0.407 58(1) 8, 192 3.21(3) 8, 192

Figure 1. The results for the critical coupling of the two-dimensional XY model as listed in
table 13. The corresponding references to the literature are given (in square brackets) as labels
of the x-axis. The two horizontal lines give the error range of the result of the present work.

Most of the results of the other authors, also the estimates from series analysis by
Campostriniet al [39] are inconsistent with the present estimate. We conclude that in all
these cases the systematic errors due to corrections to scaling are underestimated.
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Table 10. Monte Carlo estimates for the ratio of slopes for the XY and BCSOS model block
observables, taken at the critical couplings, cf the definition in equation (27).

L l D1 D2 A1 A2

16 1 −0.4167(14) −0.4137(17)
24 1 −0.4206(14) −0.4195(25)
32 1 −0.4249(17) −0.4227(33)
48 1 −0.4252(19) −0.4267(48)
64 1 −0.4255(24) −0.4270(67)
96 1 −0.4257(32) −0.4410(99)

128 1 −0.4267(41) −0.439(13)
192 1 −0.4280(59) −0.413(19)

16 2 −0.4271(11) −0.4302(11) −0.4154(13) −0.4046(12)
24 2 −0.4299(13) −0.4314(13) −0.4194(13) −0.4112(17)
32 2 −0.4298(15) −0.4304(14) −0.4236(14) −0.4167(23)
48 2 −0.4288(19) −0.4285(19) −0.4244(17) −0.4195(34)
64 2 −0.4281(23) −0.4285(24) −0.4238(20) −0.4271(46)
96 2 −0.4355(33) −0.4365(33) −0.4263(25) −0.4326(70)

128 2 −0.4250(41) −0.4252(42) −0.4281(32) −0.4140(92)
192 2 −0.4282(60) −0.4277(62) −0.4276(46) −0.412(14)

16 4 −0.419 61(73) −0.425 05(77) −0.4070(13) −0.3657(12)
24 4 −0.425 92(89) −0.428 39(90) −0.4140(13) −0.3962(11)
32 4 −0.429 65(98) −0.430 38(95) −0.4182(13) −0.4061(14)
48 4 −0.4290(12) −0.4291(11) −0.4218(13) −0.4148(21)
64 4 −0.4294(13) −0.4296(13) −0.4213(15) −0.4187(28)
96 4 −0.4324(17) −0.4323(17) −0.4250(17) −0.4236(43)

128 4 −0.4296(21) −0.4290(20) −0.4264(21) −0.4177(57)
192 4 −0.4295(30) −0.4300(29) −0.4281(29) −0.4050(85)

24 8 −0.422 39(92) −0.423 00(69) −0.4120(18) −0.383 03(53)
32 8 −0.423 73(70) −0.427 91(81) −0.4087(11) −0.3694(18)
48 8 −0.428 71(87) −0.430 10(86) −0.4147(13) −0.3952(12)
64 8 −0.429 60(99) −0.430 30(95) −0.4177(13) −0.4035(15)
96 8 −0.4320(12) −0.4328(12) −0.4204(15) −0.4159(23)

128 8 −0.4313(14) −0.4311(13) −0.4228(15) −0.4192(31)
192 8 −0.4311(18) −0.4307(17) −0.4267(19) −0.4175(48)

Table 11. Our results for the non-universal constantsA andC. In the Ising model case, the
index ‘a’ refers to the matching with the BCSOS model, the index ‘b’ refers to the matching
with the ASOS model.

Model A C

XY 0.233(3) 1.776(4)
ASOS 0.695(8) 1.099(4)
DG 0.080(3) 2.438(6)
Ising a 0.80(1) 1.03(2)
Ising b 0.80(1) 1.01(1)

In the case of the ASOS model, see table 14, we only compare with our previous
estimate [6] and with an estimate by Adler from a ninth-order low-temperature series. The
series estimate has a quite large error, but is consistent with our result.
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Table 12. Comparison of our results for the DG model with previous estimates.

Authors Year KDG
R A C

Swendsen [29] 1977 0.77(6)
Shugardet al [30] 1978 0.68
Janke and Nather [31] 1991 0.665(5)

fit 1 0.6657(3) 0.1204(18) 2.370(11)
fit 2 0.6595(3) 0.0287(7) 2.812(14)

Evertzet al [32] 1993 0.662(3)
Hasenbuschet al [7, 6] 1992/94 0.6645(6) 0.078(5) 2.44(3)
Hasenbusch and Pinn, this work 1996 0.6653(2) 0.080(3) 2.438(6)

Table 13. Comparison of our results for the XY model with previous estimates.

Authors Year KXY
R A C

Baillie and Gupta [33] 1991 1.1218 0.2129 1.7258
Baillie and Gupta [34] 1992 1.119(6)
Biferale [35] 1989 1.112(2) 1.74(20)
Hasenbuschet al [6] 1992/94 1.1197(5) 0.223(13) 1.78(2)
Olsson [36] 1994 1.120 82(25) 1.585(9)
Olsson [37] 1995 1.120 91(13) 1.59(2)
Schultka and Manousakis [38] 1994 1.1173(50) 1.800(2)
Campostriniet al [39] 1996 1.1166(4)
Hasenbusch and Pinn, this work 1996 1.1199(1) 0.233(3) 1.776(4)

Table 14. Comparison of our results for the ASOS model with previous estimates.

Authors Year KASOS
R A C

Shugardet al [30] 1978 0.81
Adler [40] 1987 0.787(24)
Hasenbuschet al [7, 6] 1992/94 0.8061(3) 0.70(8) 1.14(2)
Hasenbusch and Pinn, this work 1996 0.806 08(2) 0.695(8) 1.099(4)

We conclude this section with a comparison of the Ising interface estimates, see table 15.
Here we find that all the cited estimates of the roughening couplings are consistent with each
other. Note, however, the large errors in the estimates that were obtained with techniques
other than the matching method. The estimate of Monet al [41] for A seems to be the
result of a wrong method.

6. Conclusions and outlook

By increasing the statistics by a factor of about 100 and by also using larger lattices compared
to [6], we obtained the most accurate estimates for the roughening couplings of the Ising
interface, the ASOS model, the DG model and the 2D XY model published so far. In
contrast to other methods, systematical errors are under control. We believe that the strong
discrepancies in the estimates of the XY critical coupling of other authors with our results
are due to neglection or incomplete handling of the corrections to scaling.
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Table 15. Comparison of our results for the Ising model with previous estimates. The index
‘a’ refers to matching with the BCSOS model, whereas the ‘b’ means matching with the ASOS
model.

Authors Year K I
R A C

Weekset al [10] 1973 0.39
Bürkner and Stauffer [11] 1983 0.396(22)
Adler [40] 1987 0.404(12)
Mon et al [41] 1988 0.410(16) 9.8(2.0) 1.36(6)
Mon et al [42] 1990 0.409(4)
Hasenbusch [7] 1992 0.4074(3)
Hasenbuschet al [8] 1996 0.407 54(5) 0.74(2) 1.03(2)
Hasenbusch and Pinn, this work, a 1996 0.407 59(2) 0.80(1) 1.03(2)
Hasenbusch and Pinn, this work, b 1996 0.407 58(1) 0.80(1) 1.01(1)

The matching procedure converges likeL−2 while other methods that rely on analytic
results derived from KT theory are plagued by corrections logarithmic in the lattice size.
In addition to the precise numbers for the roughening coupling and other non-universal
constants the matching provides an unambigous confirmation of the KT nature of the phase
transition of the models considered. It is interesting to compute the observables used for
the matching method for the sine–Gordon model in perturbation theory. This will allow
one to rederive the KT flow equations from finite size scaling. Furthermore, it will provide
quantitative information about the RG flow, in particular about the critical trajectory, which
can be compared with the numerical results given in the present paper.
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